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Abstract 
 World-wide amphibian declines sparked concern and encouraged investigation into 

potential causes beginning in the 1980’s.  Infectious disease has been identified as one of the 

major potential contributors to amphibian declines.  For example, Ranavirus has caused 

amphibian die-offs throughout the United States.  Investigators isolated Ranavirus from dead or 

moribund amphibians during large-scale die-offs of amphibians in the Cades Cove area of Great 

Smoky Mountains National Park in 1999-2001.  In 2009, after nearly a decade without follow-up 

monitoring, I undertook an investigation to determine if the virus persisted in the area, and if so, 

to assess spatial, temporal, and taxonomic patterns in prevalence.  Three amphibian breeding 

ponds, including Gourley Pond, the site of these earlier mortality events, were monitored for 

Ranavirus during the 2009 amphibian breeding season.  A peak in prevalence occurred at 

Gourley Pond corresponding to a massive amphibian die-off.  Prevalence varied among three 

different taxonomic groups during this mortality event with the highest prevalence, 84%, 

detected in larval Ambystomatids, 44.4% prevalence in adult Newts, and no virus detected in 

adult Plethodontids.  I did not detect virus at either of the other two breeding ponds despite 

equivalent sampling effort, similar community composition, and close proximity to Gourley 

Pond.  These results suggest that the severity and spatial extent of Ranavirus in Cades Cove 

remains unchanged since its initial detection a decade ago.  Also, despite the observed massive 

die-offs there is no evidence of local amphibian extinction at Gourley Pond. 
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Introduction 

 Amphibian declines have increased dramatically since the 1980’s, and today nearly one 

third of amphibian species are threatened with extinction (Bailie et al. 2004).  Suspected causes 

of these declines include habitat disturbance and destruction, introduced species, climate change, 

and disease (Collins & Storfer 2003).  Disease is one of the main, but also least understood 

causes of amphibian declines (Cunningham et al. 1996, Daszak et al. 2003).  Further 

understanding of disease ecology in natural populations of amphibians can provide insight into 

why amphibian populations experience disease outbreaks and how to lessen the impacts of 

disease.  

Two main pathogens are thought to threaten amphibian populations. One is the chytrid 

fungal pathogen, Batrachochytrium dendrobatidis, associated with amphibian population 

declines and species extinctions in Central and South America (Daszak et al. 2003).  The second, 

and the subject of this study, is a viral pathogen in the genus Ranavirus, family Iridoviridae.  

Amphibian die-off events attributed to Ranavirus occur sporadically throughout North America 

(Green et al. 2002), Australia, Great Britain, Europe, and South America (Hyatt et al. 2000).  

This virus has been documented in several diverse groups of amphibians including frogs, toads, 

salamanders, and newts (Chinchar 2002). 

 The double-stranded DNA viruses in the Ranavirus family cause systemic infection in 

fish, amphibians, and reptiles and have been detected in at least fifteen U.S. states (Green et al. 

2002).  Both naked and enveloped viral particles infect host cells, in the former through fusion 

with the host cell plasma membrane and in the latter through receptor mediated endocytosis 

(Chinchar et al. 2009).   At the cellular level, Ranavirus inhibits cellular, protein, RNA, and 

DNA synthesis, and induces apoptosis (Chinchar et al. 2009).  Virus particles show a strong 
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tropism for the proximal tubular epithelium of the kidney (Chinchar et al. 2009) but other organs 

are also infected.  At the organismal level, infection manifests as hemorrhaging and necrosis in 

internal organs, often the kidney, liver, spleen, and intestines (Gray et al. 2009a).  Affected 

animals often exhibit balance problems, erratic swimming, lethargy, lesions, and reddening of 

ventral skin and hindlimbs (Converse & Green 2005). 

 Two strains in the Ranavirus family, Ambystoma tigrinum virus (ATV) and Frog Virus 3 

(FV3) cause most of the infections in amphibians in the United States (Chinchar et al. 2009).  

Mortality in pond-dwelling larval amphibians, where most virus-associated mortality is 

observed, can occur in excess of 90% during die-off events (Green & Converse 2005).  In the 

Southwestern United States, viruses associated with mortality are typically identified as the ATV 

strain and affect mainly Tiger Salamanders (Ambystoma tigrinum) in die-off events (Jancovich et 

al. 2005).  In the eastern United States, mortality events usually occur in communities with 

several amphibian species, most commonly Eastern Red-spotted Newts (Notophthalmus 

viridescens), Wood Frogs (Rana sylvatica), and Spotted Salamanders (Amybstoma maculatum) 

(Green et al. 2002).  Viruses isolated from die-off events in this region are typically most similar 

to the Frog Virus 3 (FV3) strain (Chinchar et al. 2009).   

 Both FV3 and ATV strains of Ranavirus can infect multiple amphibian species and result 

in wide-ranging outcomes, from asymptomatic carrier states to lethal infections (Schock et al. 

2008).  Temperature (Rojas et al. 2005), host species (Schock et al. 2008), viral load , and host 

life-stage all influence infection outcome (Brunner et al. 2005).  Additionally, exposure to toxins 

and pesticides (specifically atrazine) increase rates of mortality following Ranavirus exposure 

(Forson & Storfer 2006). 
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 Transmission of the Ranavirus occurs through necrophagy and other types of direct 

contact with infected individuals, as well as contact with infected water or sediment (Harp & 

Petranka 2006).  In the ATV/Tiger Salamander system, Brunner et al. (2004) documented that 

some of the adult Tiger Salamanders returning to their natal pond to breed were asymptomatic 

carriers for the virus; the authors propose that adults may serve as intraspecific reservoirs that 

infect naïve larvae and perpetuate the disease cycle year after year.   

Since most studies of Ranavirus in amphibian populations have focused on extreme 

mortality events (Green et al. 2002) the mechanisms of viral persistence in a population outside 

of die-off events is not well understood.  My study focuses on the Cades Cove area of the Great 

Smoky Mountains National Park (GSMNP), which has a documented history of this disease.  A 

United States Geologic Survey (USGS) field crew conducting amphibian surveys as part of a 

Inventory and Monitoring Program documented mortality attributed to Ranavirus infection in 

amphibians at Gourley Pond, located in Cades Cove, in 1999, 2000, and 2001 (Green et al. 2002, 

Dodd 2003). A more thorough summary of their findings is presented in Appendix B  During 

these events, affected species included marbled salamander (Ambystoma opacum) larvae, 

pickerel frog (Rana palustris) metamorphs, wood frog (Rana sylvatica) tadpoles, and Eastern 

Red-spotted Newts (Notophthalmus viridescens) (Green et al. 2002).  During their extensive 

sampling, USGS personnel did not observe evidence of virus outbreaks at any other location in 

GSMNP (Dodd 2004).  No die-off events have been reported at Gourley Pond since the 

conclusion on the USGS Inventory and Monitoring Program in 2001, but this most likely reflects 

lack of monitoring.   

Given the past series of outbreaks, the Cades Cove amphibian community provides an 

ideal situation for investigating the potential of the virus to remain in a population following a 
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series of die-off events.  During work completed in 2008, I did not detect virus in any samples 

taken from salamanders collected at six streams in and around Cades Cove (176 individuals 

sampled, corresponding to a prevalence of 5% or less with 95% confidence).  This result was 

surprising given that Gray et al. (2009b) detected virus in similar species in other areas of the 

park in 2007.  Lack of detectable virus in the 2008 samples also raised the question of whether 

the virus was still present in the Cades Cove amphibian population.  I targeted the location of 

previous outbreaks during the 2009 amphibian breeding season in order to address the possibility 

that Ranavirus might remain in the population and to assess the possibility that the virus was not 

detectable elsewhere and may occur only in the Gourley Pond amphibian community.   

Background 

Temporal variation 

Multiple pathogens in a variety of communities exhibit seasonality in disease outbreaks 

(Altizer et al. 2006).  Green et al. (2002) note the seasonal nature of Ranavirus infections, 

specifically that in the United States 88% of mortality events analyzed and caused by the virus 

begin in June, July, or August.  Seasonality of viral outbreaks may occur as a function of biotic 

factors such as variation in susceptibility during different life stages or temporal variation in 

amphibian host abundance (Brunner et al. 2004).  In particular, larval amphibians and those 

undergoing metamorphosis may experience increased disease susceptibility due to 

immunological characteristics.  Based on the Xenopus model, larval anurans may not have fully 

developed immune systems (Carey et al. 1999), and amphibians undergoing metamorphosis 

experience temporary immunosuppression as a result of high levels of hormones that mediate 

this transitional stage (Rollins-Smith 1998).  Abiotic factors such as temperature can likewise 
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affect infection rates and also produce seasonal patterns.  For Tiger Salamanders exposed to 

Ranavirus at 10, 18, and 26°C, the group at 18°C experienced the highest rate of morality, 

potentially indicating an interaction between the efficiency of virus replication at different 

temperatures and host immune function (Rojas et al. 2005).  Natural populations of Ambystoma 

tigrinum in Arizona demonstrate temporal variation in Ranavirus prevalence, typically observed 

as one to two peaks in prevalence each year corresponding to high larval abundance (Greer et al. 

2009).  I expected that if the virus were still present I would witness at least one peak in 

prevalence during the breeding season.  

Species variation 

Mortality events documented in nature most frequently involve ambystomatid or anuran 

larvae and recent metamorphs (Green et al. 2002).  Co-occurring species not generally involved 

in die-offs are not usually assessed for viral infection (pers. obs.).  Laboratory exposure 

experiments demonstrate that different species of amphibians have variable rates of mortality 

following exposure to Ranavirus (Schock et al. 2008).  Because dead and moribund species are 

usually the target of analysis, little is known about the possibility that additional species also 

experience infection.  Amphibians from several distinct phylogenetic groups utilize ponds and 

the surrounding area.  These groups vary in their life history, especially in the amount of time 

they spend in the pond.  Amphibian anuran, ambystomatid, and newt larvae are confined to the 

pond.  Adult newts spend time as adults both in the pond and on land.  Finally, Plethodontidae 

includes both stream-dwelling and terrestrial salamanders that can be found within one meter of 

pond shorelines.  I expected to see variation in prevalence between these groups as a result of 



www.manaraa.com

 6 

either variation in exposure due to group-specific habitat preference/requirements or variation in 

the animals’ susceptibility to the virus.   

Site variation 

Experimental and observational evidence has begun to give a more detailed 

understanding of the spatial dynamics of Ranavirus, but we still do not completely understand 

how the virus moves through the landscape and between water bodies. Extremely localized 

outbreaks of Ranavirus have been documented even for ponds within a wetland complex 

characterized by high connectivity via animal movement (Petranka et al. 2007).  The complex 

spatial dynamics for this virus are demonstrated in the ATV/tiger salamander system on the 

Kaibab Plateau in Arizona, where ponds located closest to each other had less similar patterns 

than more spatially distant ponds (Greer et al. 2009).   

In Cades Cove, the USGS crew documenting the amphibian mortality at Cades Cove, 

conducted visual encounter surveys for tadpoles and salamanders at several other amphibian 

wetland breeding sites, including Methodist Church Pond and Gum Swamp.  They did not 

observe any signs of disease at these other locations (Dodd 2004).   Sampling for disease 

surveillance in Cades Cove at locations other than Gourley Pond did not occur prior to my study 

in 2009.  However, lack of documented disease in other locations by the USGS field crew 

suggests a localized die-off at Gourley Pond.  I sampled three sites, including Gourley Pond in 

the Cades Cove area to better understand the spatial extent of the disease in the Cades Cove 

amphibian community. 

In order to better understand the disease ecology of Ranavirus in Cades Cove 

amphbibians, this study address three questions: Does prevalence vary 1) across the season, 2) 
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between taxonomic groups, and 3) between amphibian breeding sites?  Understanding whether 

species, locations, and seasonality influence viral prevalence will increase the broad 

understanding of this disease and will also help to inform management decisions to prevent or 

mitigate population-level impacts of this amphibian pathogen.   
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Methods 

Sampling 

 Several amphibian pond-breeding sites occur within Cades Cove.  I chose to monitor 

three ponds: Gourley Pond, Methodist Church Pond, and Gum Swamp to discern whether 

disease occurs in additional ponds or if the Ranavirus die-offs are a phenomenon localized to 

Gourley Pond.  The sites sampled in this study are all within a 3 kilometers radius (Figure A-1)1.  

All three ponds have similar amphibian species composition, including the species involved in 

past Ranavirus mortality events in Cades Cove (Table A-1).  I compared the prevalence data 

obtained during the 2009 breeding season at each of the three sites in order to assess the 

possibility of a localized outbreak at Gourley Pond. 

 To detect temporal variation in prevalence, I monitored each site once per month 

beginning in February 2009 and then every 10-14 days from May through September 2009.  

Except on days of low amphibian abundance, tail tissues were collected from the first thirty 

salamanders (adults and larvae) or tadpoles encountered.  Table A-2 summarizes sample dates 

and sizes for the three ponds.  On days with low abundance, I searched for at least two person 

hours (one hour with two people) and collected tail tissue from the amphibians I encountered, if 

any. Because infection status of an individual can change temporally, I sampled previously tested 

individually if they were encountered.  I obtained tail tissue by placing each animal into a plastic 

bag and applying gentle pressure through the plastic bag with the straight edge of a ruler.  This 

procedure induces the natural adaptation of salamanders and tadpoles to shed a portion of their 

tail in order to evade predation.  Salamanders and tadpoles autotomize their tail resulting in 

                                                 
1 All figures and tables are located in the Appendix. 
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minimal blood loss and the tail tissue regenerates naturally.  The target sample size of thirty 

allows for detection of disease (with 95% confidence) when prevalence is at or above 10% 

(Dohoo et al. 2003).  To document variation in species prevalence, I collected tissue samples 

from several distinct phylogenetic groups of amphibians that inhabit the area in and around 

Gourley Pond during a period of high observed amphibian mortality attributed to Ranavirus on 

May 19 and 22 of the 2009 field season.   

 Using tail tissue to detect disease provides an alternative to lethal sampling methods and 

is frequently used to detect Ranavirus in host populations (Brunner et al. 2004).  This sampling 

method was appropriate in this case because of concern with minimizing impacts on the local 

amphibian population in a national park and because of the large sample size required to address 

my objectives.  Greer et al. (2007) do show that tail clips have lower sensitivity than whole-

animal sampling methods.  Less than five days following exposure tail clip samples tend to 

underestimate prevalence (Greer & Collins 2007), (Figure A-2).  The prevalence reported here 

may underestimate true viral prevalence in the population, particularly immediately following 

exposure.  However, because I sampled so frequently it was not imperative for me to detect virus 

immediately.     Sampling took place under National Park system permit # GRSM-2008-

SCI-0056 and all methods were approved by IACUC at the University of Tennessee (protocol # 

1763). 

Virus detection 

 Tail tissue was stored in 95% ethanol at -20°C until processing.  I extracted DNA from 

up to 25mg of tissue using the standard protocol for DNeasy (Qiagen) tissue extraction or a 

standard salt-extraction protocol (Sambrook & Russell 2001).  The DNeasy protocol was 
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followed as outlined in the DNeasy Blood and Tissue Handbook, except I eluted the DNA with 

100µl of buffer AE instead of the standard 200µl.  To extract DNA using the standard salt 

extraction protocol, I incubated approximately 10 mg of tissue in 300 µl cell lysis buffer 

(100mM NaCl, 100mM Tris-Cl, 25mM EDTA and 0.5%SDS) with 1.5 µl proteinase K 

(20mg/mL) at 37ºC overnight.  Samples were vortexed briefly following this incubation.  

Following the addition of 100µl protein precipitate solution (4M Guanidine thiocyanate, 100mM 

Tris-Cl), I centrifuged the samples at 13,000 rpm for 5 minutes, repeating this step when the 

protein pellet was not tight.  The supernatant (containing DNA) was removed to a clean tube via 

aspiration with a pipetter.  To precipitate the DNA I added 300µl 100% isopropanol and mixed 

the tubes by inverting them gently 50 times.  I discarded the supernatant following centrifugation 

at 13,000 rpm for 5 min.  The DNA was washed using 300 µl 70% chilled ethanol, tubes were 

then inverted and dried overnight.  I resuspended the DNA in 50µl of buffer AE (Qiagen).  In 

order to confirm extraction success, I quantified the amount of DNA using a NanoDrop™.  I 

used buffer AE (Qiagen) to further dilute samples with a high quantity of DNA to a final 

concentration between 5 and 250 ng/ul.   

 In order to detect virus in the tissues, I used MCP 4 (“forward”) and MCP 5 (“reverse”) 

primers (Mao et al. 1997), which amplify a highly conserved portion of the viral genome.  Each 

10µl reaction used reagents from the GoTaq Promega system and contained 2µl GoTaq flexi 

buffer, 0.8µl 25mM McCl2, 0.2µl dNTPs (2.5mM each nucleotide), 0.4µl each primer at 2.5µM 

concentration, 1 unit of Taq polymerase, 5.0µl DNA grade water, and 1µl template DNA.  All 

reactions were carried out in duplicate and alongside positive and negative controls.  DNA 

extracted from skin of a known Ranavirus positive (by culture and previous PCR) anuran 

obtained from the Veterinary Diagnostic and Investigational Laboratory at the University of 
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Georgia, College of Veterinary Medicine in Tipton, Georgia served as the positive control.  

Negative controls used DNA extracted from animal tissue that had never been exposed to 

Ranavirus or tested negative for virus in previous PCR’s.   Ranavirus detection PCR used the 

following thermocycler conditions: initial denaturation of 5 minutes at 95˚C followed by 35 

cycles of 94˚C for 30 seconds, 56˚C for 30 seconds, and 72˚C for 30 seconds, ending with a final 

annealing step at 72˚C for 2 minutes, and then held at 4˚C until tubes were removed and stored at 

-20˚C or visualized on an agarose gel.   

PCR products were visualized following standard protocol on a 2% agarose gel to detect 

the presence of a 500 base pair band.  For ambiguous samples, when the duplicate reaction did 

not confirm the initial result, I re-extracted the DNA and ran a third PCR for that sample.  A 

subset of negative samples (75) were tested in PCR reactions with the standard Eukaryote 

primers 1427F and 1616R (van Hannen et al. 1998) to verify that negative results were not 

caused by failed extraction or contamination with PCR-inhibiting chemicals. 

To verify virus identification and evaluate whether different strains might be affecting 

different populations, a selection of positive PCR products were directly sequenced using the 

MCP-specific PCR primers.  In addition, for the same samples, I sequenced two genome regions 

used by Jancovich et al. (2005) to evaluate variation in ATV strains (primer sets 16F and 16R 

and 100F and 100R). For the 100F/100R primer set, I used 1.8µl of 10x GoTaq flexi buffer, 

2.16µl MgCl2, 0.36µl dNTP’s (10mM concentration each nucleotide), 1.5µl of each primer (at 

10µM concentration), 1.5units of TAQ polymerase, 0.38µl BSA, 1.5µl of template DNA and 

DNA-grade water up to a 18µl  total volume.  The reagent volumes were identical for PCR 

reactions with the 16F/16R primer set except that I only added 1.44µl of MgCl2.  Thermocyler 

conditions for both regions were as follows: initial denaturation of 2 minutes at 94˚C followed by 
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30 cycles of 94˚C for 15 seconds, 55˚C for 15 seconds, and 72˚C for 15 seconds, ending with a 

final annealing step at 72˚C for 1 minute, and then held at 4˚C.  All sequencing was performed at 

the University of Tennessee Molecular Biology Resource Facility on an ABI 3730. 

Data analysis 

 Temporal variation in prevalence at Gourley Pond (the only location where I detected 

virus) was explored using a logistic regression model specifying a quadratic function of time as 

the predictor for prevalence.  The following equation was used:  

log[p/(1-p)] = β0 + β1 t + β2 t
2  

Where p is the probability of an amphibian testing positive for virus and t is time expressed in 

Julian days (days after January 1, 2009). Logistic regression was fitted using the glm function in 

R (www.r-project.org).  This is a purely phenomenological approach intended to distinguish 

constant prevalence (no relationship between time and virus detection), a steady increase or 

decrease in prevalence (significant linear regression or significant quadratic without a local 

maximum or minimum), or a temporal spike in prevalence (significant quadratic regression with 

a local maximum within the range of the data). The constant (β0 only), steady change (β0 and β1), 

and quadratic (β0, β1, and β2) models were compared using Akaike’s Information Criterion 

(AIC).  Comparison of the AIC values for these models provides support for the model with the 

minimum AIC value when the minimum AIC value is ten or more less than the AIC values for 

the other models (Burnham & Anderson 2002).  This analysis was performed with all samples, 

and also with Plethodontids removed, because Plethodontids were collected on only one 

sampling date.  
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 To test for variation in prevalence among ecological/phylogenetic groups, I categorized 

samples from the die-off period into one of three different groups: adult newts, larval 

ambystomatids, and plethodontids.  I did not include anuran amphibians in this comparison 

because they did not occur in sufficient numbers during the dates of the die-off. Variation in 

prevalence between groups was analyzed using a contingency table randomization test, in place 

of a χ2 test, to avoid the possibility of bias due to low expected counts (McDonald 2009).  

Fisher’s exact tests were used post-hoc to explore variation between pairs of groups.  

 Finally, I used a contingency table randomization test to analyze the association between 

site and number of positive or negative amphibian samples.  Similar to the methods specified 

above for detecting variation among phylogenetic groups, Fisher’s exact tests were used to 

examine variation between pairs of sites.   

 .  All analyses were carried out using R (http://www.R-project.org). 
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Results 

Mortality event 

 I observed several hundred dead or dying larval ambystomatids on 19 and 22 May, 2009 

at Gourley Pond and refer to these dates, hereafter, as the mortality event.  Dead animals were 

also observed at Gourley Pond on June 4, although in smaller numbers (fewer than 100).  This 

mortality coincided with a marked increase in amphibian abundance/activity (Tables A-2 & 3).   

Temporal variation 

 I first detected virus at Gourley Pond in samples from Aril 30.  Viral prevalence at this 

site reached 80% on May 19, 2009.  Virus was detected at declining levels on 22 May and 4 

June.  I did not detect virus in samples collected after 4 June.  Table A-3 provides a summary of 

individuals positive for each species sampled on each sampling date at Gourley Pond.  

Prevalence demonstrated temporal variation as seen in Figure A-3.  A logistic regression with 

time as the predictor variable models the prevalence data well both with (Fig. A-3a) and without 

(Fig A-3b) including plethodontid salamanders in the analysis.  In both cases, the date and the 

square of the date are significant predictors of infection status (all p-values <0.0001 Table 4c).  

Figure 3a shows the fitted predicted curve of the logistic regression with the actual data plotted 

as hollow circles.  Error bars represent the 95% confidence interval for the predicted prevalence 

for each sampling date (from the predict.glm function in R).  Table A-4a and A-4b list the AIC 

values for a null model, the model with time as a linear predictor, and with a quadratic function 

of time.  The quadratic, which uses both time and the square of time to predict prevalence, has 

the lowest AIC.  This pattern is true with and without Plethodontids.  By the standards given in 

Burnham and Anderson (2002), when ∆AIC is greater than 10 (where ∆AICi=AICi -AICminimum), 
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the model being considered, here a model without day or the square of day, has essentially no 

support and fails to explain substantial variation in prevalence. Parameter estimates for these 

variables in the quadratic regression model are given in Table A-4c (p-values all < 0.0001).   

Species variation 

 During the course of this 2009 study I detected virus in tissues from larval Spring Peepers 

(P. crucifer), Upland Chorus Frogs (P. feriarum), Wood Frogs (R. sylvatica), Marbled 

Salamanders (A. maculatum), Spotted Salamanders (A. oppacum), and adult Eastern Red-Spotted 

Newts (N. viridescens) collected from Gourley Pond (Table A-3). 

 During the observed mortality event at Gourley Pond, three distinct phylogenetic groups: 

larval ambystomatids, adult Plethodontids, and adult newts were sampled.  Figure A-4 displays 

the prevalence observed during the die-off differed among these three co-occurring groups 

(χ2=25.7 randomization p-value < 0.0001).  Fisher’s exact test confirmed that each group differs 

significantly from the others (Fig. A-4). Prevalence was highest in the ambystomatid larvae at 

84%.  I did not detect virus in any of the ten individuals in the plethodontid group.  Five of the 

nine adult newts sampled tested positive for the virus giving a prevalence of 44%.  The other 

species in which I detected virus are listed in Table 3 but were not included in the comparison 

due to the small sample size for these species during the mortality event.  

Site variation 

 Figure 5 displays the prevalence detected at the three different sampling sites during the 

mortality event at Gourley Pond.  Virus was not detected in any of the samples from Methodist 

Church Pond or Gum Swamp.  Prevalence intervals for the highest observed prevalence 

represent 95% Clopper-Pearson confidence intervals based on a binomial distribution.  
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Prevalence reached 80% in the pond-breeding amphibians tested on 19 May at Gourley Pond 

during the observed mortality event.  The χ2-value comparing prevalence at the three sites was 

67.9 with a corresponding randomization p-value of <0.0001 (Fig. A-5).  Fisher’s exact test gives 

p-values < 0.0001 for comparing Gourley Pond prevalence to the other two sites.   

Viral strain identification 

 I sequenced three different regions of the virus extracted from six tail clips taken from 

two Wood Frog tadpoles, a Spring Peeper tadpole, an adult Newt, and a Spotted Salamander 

larva at Gourley Pond.  All homologous sequences were identical and matched closely with the 

FV3 virus reference genome (accessible on Genbank).  Each sequenced region differed from the 

FV3 reference by exactly one base pair (Table A-5).   

Amphibian community composition 

 Amphibian community composition was similar at all three sites.  Table A-1 summarizes 

the species of pond-breeding amphibians found (and tested for Ranavirus) at each of the sites 

during the 2009 breeding season.  Of the pond-breeding species documented from Gourley Pond 

based on their surveys from 1998-2001 (Dodd 2004), I did not find Northern Green Frogs (R. 

clamitans) or Pickerel Frogs (R. palustris), American Bullfrog (R. catesbeiana) or Fowler’s Toad 

(B. fowleri), at one or more of the three sites sampled   
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Discussion 

 Surprisingly, the results of this study suggest the severity and spatial distribution of the 

impacts of Ranavirus on amphibians in Cades Cove have not changed over a decade.  I detected 

virus only in Gourley Pond despite good statistical power to detect even modest prevalence at 

two neighboring breeding sites (Methodist Church Pond n=274 corresponding prevalence of ≤ 

1.34%, and Gum Swamp n=185 corresponding prevalence of ≤ 2% with 95% confidence).  

Detection of virus was tightly associated with a brief die-off of hundreds of Ambystomatid and 

Anuran larvae.  Following the documentation of dramatic amphibian die-offs in Gourley Pond in 

1999-2001, to my knowledge monitoring of these ponds did not continue again until my work in 

2009. The pattern reported here answers the three questions regarding temporal, species, and site 

variation in prevalence but also raises several additional questions critical for disease ecology, 

evolution, and conservation.   

Temporal Variation 

 I observed seasonal variation in prevalence of Ranavirus in Gourley Pond over the 2009 

amphibian breeding season (Fig. A-3).  Qualitatively, prevalence followed a typical infectious 

disease epidemic curve.  In my study, the highest observed prevalence of virus coincided with 

the presence of large numbers of larval amphibians in the community. Fluctuations in larval 

abundance may account for the observed variation in prevalence because larvae tend to have 

greater susceptibility to Ranavirus than adults (Brunner et al. 2004), and transmission rates are 

likely density-dependent (Greer et al. 2008).   Temperature may also contribute to the seasonality 

of the virus.  Average daily ambient temperature is plotted along with the prevalence pattern 
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observed at Gourley Pond (Fig. 5).  A notable temperature effect would require further 

monitoring to reveal patterns in temperature and peaks in prevalence. 

Species variation  

 This study also documents variation in observed viral prevalence between 

ecological/phylogenetic groups (Fig. 4.  The statistically significant variation in prevalence 

between the three distinct phylogenetic groups at Gourley Pond may reflect the groups’ different 

rates of exposure or susceptibility to the virus.  Plethodontid salamanders were found outside the 

pond (within one meter) and did not have detectable levels of virus.  In contrast, larval 

ambystomatids are confined to the pond and would have much higher rates of exposure to 

infected water or sediment in a pond with virus than the stream-dwelling or terrestrial 

plethodontids.  Prevalence among adult newts was 0.44 during the mortality event, although no 

gross signs of disease or mortality were observed in this group.  Newts were, however, observed 

eating decomposing larval ambystomatids and presumably had levels of exposure to the virus 

similar to the larval ambystomatids.  None of the Newts sampled had gross signs of disease and, 

as mentioned previously, may be good candidates as asymptomatic carriers of the virus. 

 Variation in detected prevalence between species may reflect both variation in exposure 

and susceptibility to Ranavirus.  Amphibian species have different breeding times and those 

breeding either before or after virus outbreaks would have much lower rates of exposure.  Also, 

exposure experiments conducted in the laboratory indicate that species vary both in their 

susceptibility to the virus and in their ability to recover from infection (Schock et al. 2008).   

 The observed die-off confirms that the virus remains active in the Cades Cove area and 

prompts investigation into what conditions allow for the persistence of virus between outbreaks.  
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Harp and Petranka (2006) showed that the virus remained viable in moist sediment and water but 

dried infected sediment did not cause disease in Wood Frogs.  The hydrology of Gourley Pond 

makes viral persistence in the environment an unlikely possibility.  Gourley Pond was dry from 

July through December 2009.  This dry period likely occurs every year and makes survival of the 

virus more likely in an animal reservoir than in the environment.   

 Identifying a potential reservoir candidate is an interesting and complex problem in such 

a speciose amphibian community.  Newts have several characteristics that suggest they may 

fulfill the role of asymptomatic carriers.  Newts have detectable levels of virus at least 

seasonally, they have not been observed dying from the virus in large numbers, and unlike 

ambystomatids and anurans that leave the ponds following metamorphosis, they tend to remain 

in ponds throughout the breeding season.   

Site variation 

 Although a decade has passed since the initial detection of viral presence in Cades Cove, 

the pattern I observed during the 2009 breeding season suggests that the spatial distribution of 

disease remains the same.   As summarized in Smith and Green (2005), during their lifetimes 

Marbled Salamanders can travel at least 1 km, Eastern Red-Spotted Newts at least 1 km, and 

Northern Green Frogs 4.8 km, and Wood Frogs 2.5 km.  The neighboring breeding ponds exist 

within the range of pond-breeding amphibian dispersal and I tested species susceptible to 

Ranavirus at these sites as well (Table A-1).  Even though animals almost certainly move 

between these ponds, the disease remains localized to Gourley Pond (Fig. A-5).   

 Although sampling did not take place at Gum Swamp during the month of May, if the 

virus had been present at this site and followed a pattern similar to that observed for Gourley 
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Pond I would have detected virus in that community as well.  These other ponds may be almost 

entirely free of Ranavirus, or it might be that the virus is common throughout Cades Cove but 

detectable only in very sick animals. In the latter case, we are still left with the question of why 

disease-associated die-offs appear to occur only at Gourley Pond.  Investigation into abiotic 

factors that increase susceptibility, particularly factors that may cause increased stress and 

reduced immune function, would help to explain why some ponds are affected while others are 

not.  For example, in Tiger Salamanders, vegetation patterns influence disease dynamics (Greer 

& Collins 2008) and pesticide exposure increases the susceptibility of Tiger Salamander larvae 

Ranavirus (Forson & Storfer 2006).  Understanding viral persistence and spread in addition to 

what mediates its acute health effects can inform management to reduce population and 

community-level impacts.   

 Documenting a viral outbreak at Gourley Pond ten years following initial reports of 

mortality suggests that these die-offs may have occurred annually for the past decade.  The 

USGS crew that documented the mortality events in the early part of the decade concluded their 

work in 2001.  Although Gourley Pond is located in a highly visited area of the park, it sits far 

enough from the road that the casual tourist would rarely happen upon it.  Also, because 

amphibians frequently engage in necrophagy and dead amphibians decompose quickly in aquatic 

environments, evidence of mortality lasts only for a short duration.     

 Observation of the 2009 die-off and the lack of monitoring between 2001 and 2009 raise 

the possibility that die-offs of hundreds of amphibians have occurred at this site on an annual 

basis for over 10 years.  Yet, amphibian populations at Gourley Pond persist.  Specific 

monitoring of population dynamics must be carried out in order to understand the population-

level effects of recurring disease in this ecosystem.  It is possible that the virus does not reduce 
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populations enough to cause local extinction, or that the system functions as part of a 

metapopulation, and animals from unaffected ponds colonize and maintain the location 

population at Gourley Pond.  Pond-breeding amphibians have incredibly high rates of pre-

metamorphic mortality.  Studies summarized by Wells (2007), demonstrate that Wood Frogs and 

Spotted Salamanders frequently experience premetamorphic mortality rates of 95% or greater.  

Thus, the mortality rates caused by Ranavirus may not exceed typical rates in virus-free years or 

ponds.   

Discriminating declines from natural population fluctuations of amphibians requires 

long-term study.  In fact, during twelve years of monitoring at a pond in South Carolina several 

species of Ambystomatids exhibited low to negligible levels of juvenile recruitment for several 

years (Pechmann et al. 1991).  The authors analyzed annual precipitation in addition to 

amphibian demographic information, concluding that the population was experiencing natural 

fluctuations caused by drought rather than population decline (1991).  A model testing the risk of 

extinction at the same site studied by Pechman et al. demonstrated that rates of terrestrial 

survival in Marbled Salamanders of 0.6 can maintain local populations even when the model 

includes frequent catastrophic reproductive failure (Taylor et al. 2005). 

 The virus most certainly acts as a strong selective force, at least locally.  Possible 

outcomes of recurring infection include eventual reduction in virulence of the pathogen or 

increased resistance in the host population.  Greer et al. (2009) speculate that increased 

resistance in hosts or reduced pathogen virulence has occurred in Arizona leading to detection of 

virus without any observed mortality in the host population.  Continued monitoring of the 

amphibian populations will help answer questions about what happens when a population 

endures repeated pathogen outbreaks.   
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 Using tail tissue for viral detection is a limitation in this study.  I detected virus in tail 

clips only a few weeks prior to observing a massive mortality event.  Using tail clips to detect 

infection is not ideal as the test can detect virus only once the virus becomes systemic in the 

animal.  Testing liver and kidney gives a more accurate indication of infection status particularly 

during early stages of infection when tail clips can yield false negative results (Greer & Collins 

2007).  Unfortunately testing liver and kidney tissue requires lethal sampling and is not realistic 

for conducting surveillance when amphibian conservation is a priority.  The observed prevalence 

may not reflect the actual viral prevalence in the population especially if animals have sublethal 

infections and only very low levels of virus.  Inability to detect low levels of virus also makes it 

difficult to identify potential reservoirs that may carry the virus and infect other animals without 

showing signs of disease.  Actual prevalence may be higher than that reflected in these results 

and more sensitive whole animal sampling or more sensitive molecular techniques such as 

quantitative PCR could give a more accurate picture of true prevalence.  Nevertheless, my study 

demonstrated that variation in relative detection rates is highly informative regarding the 

association of Ranavirus with disease and variation in impact across species, time, and space. 

 Future studies could benefit from the use of antibody tests to detect virus exposure, 

potentially answering some of the questions about whether or not lack of prevalence in other 

communities reflects variation in exposure or variation in resistance.  Currently, amphibian 

immune responses to Ranavirus are not well studied, with the exception of the well-characterized 

and understood laboratory organism Xenopus laevis (Gantress et al. 2003).  While X. laevis does 

produce detectable levels of antibodies when exposed to Ranavirus, using this antibody test in a 

natural population would require an understanding of immune function in each amphibian 

species and life-history phase to know that the test would accurately demonstrate viral exposure.   
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 This study suggests that the spatial extent of mortality events has not changed over a 

decade.  Secondly, the continued presence of amphibian populations at Gourley Pond suggests 

that no species have experienced obvious local extinction.  The factors that preclude disease 

manifestation in proximal ponds remain unclear.  Questions also remain about the abiotic or 

biotic factors that may make Gourley Pond amphibians more susceptible to Ranavirus and the 

population-level impact of the virus on these amphibians.   
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Figure A- 1. 

Map of sample sites in the Cades Cove region of Great Smoky Mountains National Park.   
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Figure A- 2.   

Adapted from Greer and Collins (2007).  Sensitivity of using PCR to detect Ranavirus in tail 
tissue versus using a lethal, whole body sampling protocol.
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a.) 

 
b.) 

 

Figure A- 3.   

The fitted predicted curve of the logistic regression using the quadratic of time as the predictor 
variable for infection status, with the predicted peaking occurring at Julian day 139 (May 19).  
Observed data are plotted as hollow circles.  Error bars represent 95% confidence intervals for 
predicted prevalence for each sample date.  Graph a.) includes plethodontid salamanders whereas 
b.) includes only pond-dwelling amphibians.  Equation and associated AIC values are given in 
table 2a and 2b.  Parameter estimates for the variables in the logistic regression equations are 
given in table 2c.   
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Figure A- 4.   

Prevalence of Ranavirus in three distinct taxonomic groups sampled during the 19 and 22 May 
mortality event at Gourley Pond.  Error bars were calculated separately for each group using a 
Clopper-Pearson 95% confidence interval.  Each group differs significantly from the others (p-
value < 0.05 for each comparison using Fisher’s Exact Test).  
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Figure A- 5.   

Highest observed prevalence for the 2009 amphibian breeding season at each of the three sites 
monitored.  Prevalence at Gourley Pond peaked at 80% but virus was not detected at either of the 
other two sites.  The displayed 95% confidence intervals are Clopper-Pearson confidence 
intervals based on the sample size for the specified date at each site.  Prevalence at Gourley Pond 
differed significantly from the other two ponds (Fisher’s Exact Test all p< 0.0001).
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Figure A- 6  

Average ambient daily temperature plotted in blue along with Ranavirus prevalence at Gourley Pond from mid-February through July 
2009.  
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Table A- 1 

Pond-breeding species occurrence by site.  An X designates individuals from this species were 
both observed and tested for Ranavirus.  An O indicates that the species was observed but not 
sampled for virus, and R indicates that this species has been documented at the location (Dodd 
2004) but was not observed during the 2009 sampling period.   
 

 Gourley Pond Gum Swamp Methodist Church 
Pond 

A. maculatum X X X 

A. opacum X X O 

P. crucifer X X X 

P. feriarum X R R 

N. viridescens X X X 

R. sylvatica X X X 

H. chryoscleris X X X 

R. catesbiana R  O 

R. clamitans R X X 

R. palustris R X X 

B. americanus O O R 

B. fowleri R R R 
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Table A- 2  

Sample sizes and dates for each of the three sites.  Numbers are [individuals tested 
positive]/[total number collected] for that date. 

Pond Site Sample Date Pos/Total 

Gourley Pond Feb 
Mar 
 
 
Apr 
 
May 
 
June 
 
 
July 

 

Total 

14 
1 
17 
29 
5 
30 
19 
22 
4 
15 
23 
2 
12 

0/5 
0/2 
0/22 
0/1 
0/1 
5/24 
24/30 
14/29 
11/40 
0/34 
0/30 
0/30 
0/3 

54/251 

Methodist Church 
Pond 

Mar 
 
 
Apr 
May 
 
June 
 
July 
 
Aug 
 
Sept 

Total 

1 
17 
29 
5 
5 
27 
11 
27 
15 
25 
8 
22 
13 

0/3 
0/2 
0/1 
0/6 
0/19 
0/22 
0/34 
0/37 
0/32 
0/30 
0/28 
0/30 
0/30 

0/274 

Gum Swamp Feb 
Mar 
Apr 
June 
 
 
July 
 
Aug 
 
Sept 

Total 

14 
29 
5 
2 
16 
30 
15 
25 
8 
23 
13 

0/4 
0/1 
0/5 
0/33 
0/32 
0/28 
0/20 
0/29 
0/30 
0/3 
0/0 

0/185 
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Table A- 3 

For each sampling date [number individuals teseted positive for Ranavirus]/[total number individuals sampled] at Gourley Pond in 
2009.   
 

Ambystomatid N. viridescens 

Date larvae adult 

R. sylvatica 
tadpoles adults larvae 

Pseudacris 

tadpoles 

Hyla 
tadpoles 

Total 
Pond-breeding 

amphibians Plethodontids 

14-Feb  0/3  0/1       0/4   

1-Mar   0/1           0/1 0/1 

17-Mar 0/4     0/18       0/22   

29-Mar       0/1       0/1   

5-Apr       0/1       0/1   

30-Apr 0/4   5/8 0/6       5/18 0/6 

19-May 19/25     3/3   2/2   24/30   

22-May 13/13     1/6       14/19 0/10 

4-Jun 7/8   0/1 2/4 0/6 2/21   11/40   

15-Jun 0/1     0/8   0/24 0/1 0/34   

23-Jun 0/2       0/7 0/20 0/1 0/30   

2-Jul 0/8       0/15 0/4 0/2 0/29   

12-Jul 0/2     0/1       0/3   

TOTALS 39/67 0/4 5/9 6/49 0/28 4/71 0/4 54/233 0/17 
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Table A- 4 

Values for AIC and associated degrees of freedom in a model using prevalence data from all 
taxonomic groups (a), and with Plethodontids excluded (b).  Parameter estimates for quadratic 
regression model are given in c.   
 

a.)   

Model (all taxonomic groups) n=251 AIC df 

z = β0 (model with no parameters) 263.3848 1 

z = β0 + β1 x  (linear) 264.3785 2 

z = β0 + β1 x + β2 x
2 (quadratic all taxonomic groups) 154.7717 3 

 

b.) 

Model (plethodontids excluded) n=241 AIC df 

z = β0 (model with no parameters) 258.4272 1 

z = β0 + β1 x  (linear) 259.3806 2 

z = β0 + β1 x + β2 x
2 (plethodontids excuded) 130.1201 3 

 

c.) 

 β0 β1 β2 

All taxanomic groups -0.0121* 
 

1.776* 
 

-0.006442* 
 

Plethodontids removed -0.01562* 
 

2.282* 
 

-0.008267* 

* indicates corresponding p-values<0.0001 
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Table A- 5  

Viral sequence isolated from Gourley Pond samples shown in black, reference FV3 genome 
(GenBank Accession no. AY548484) sequence shown in blue.  Sequence shown in are from a.) 
the MCP region, b.) the region amplified with the 100F/100R primers and c.) the region 
amplified with the 16F/16R primers. 
a.)  
 TCTTGAGAGAGCAATGTACGGGGGTTCGGACGCCACCACGTACTTTGTCAAGGAGCACTACC 

TCTTGAGAGAGCAATGTACGGGGGTTCGGACGCCACCACGTACTTTGTCAAGGAGCACTACC 
 

 CCGTGGGGTGGTTCACCAAGCTGCCGTCTCTGGCTGCCAAGATGTCGGGTAACCCGGCTTTCG 
CCGTGGGGTGGTTCACCAAGCTGCCGTCTCTGGCTGCCAAGATGTCGGGTAACCCGGCTTTCG 
 

 GGCAGCAGTTTTCGGTCGGCGTTCCCAGGTCGGGGGATTACATCCTCAACGCCTGGTTGGTGC 
GGCAGCAGTTTTCGGTCGGCGTTCCCAGGTCGGGGGATTACATCCTCAACGCCTGGTTGGTGC 
 

 TCAAGACCCCCGAGGTCGAGCTCCTGGCTGCAAACCAGCTGGGAGACAATGGCACCATCAGG 
TCAAGACCCCCGAGGTCGAGCTCCTGGCTGCAAACCAGCTGGGAGACAATGGCACCATCAGG 
 

 TGGACAAAGA ACCCCATGCACAACATTGTGGAGAGCGTCACCCTCTCATTCAACGACATCAG 
TGGACAAAGA ACCCCATGCACAACATTGTGGAGAGCGTCACCCTCTCATTCAACGACATCAG 
 

 CGCCCAGTCCTTTAACACGGCATACCTGGACGCCTGGAGCGAGTACACCATGCCAGAGGCCA 
CGCCCAGTCCTTTAACACGGCATACCTGGACGCCTGGAGCGAGTACACCATGCCAGAGGCCA 

 

 AGCGCACAGGCTACTATAACATGATAGGCAACACCAGCGATCTCATCAACCCCGCCCCGGCC 
AGCGCACAGGCTACTATAACATGATAGGCAACACCAGCGATCTCATCAACCCCGCCCCTGCC 

 

 ACAGGCCAGGACGGAGCCAGGGTCCTCCCGGCCAAGAACCTGGTTCTTCCCCTCCCATTCTTC 
ACAGGCCAGGACGGAGCCAGGGTCCTCCCGGCCAAGAACCTGGTTCTTCCCCTCCCATTCTTC 

 

 TTCTCCAGAGACAGCGGCCTGGCCCTGCCAGTCGTCTCCCTCCCCTACAACGAGATCAGG 
TTCTCCAGAGACAGCGGCCTGGCCCTGCCAGTCGTCTCCCTCCCCTACAACGAGATCAGG 

 
b.) 
 GCAATGTGTGACGAAAAGTCTTTTGAGAACAAAAAGGTTTTACAGCCGGACGTTGGGGTTAT 

GCAATGTGTGACGAAAAGTCTTTTGAGAACAAAAAGGTTTTACAGCCGGACGTTGGGGTTAT 
 

 GCACGCAAAGATGTAGACTCTTTCCGAATATAAGGAGAGTGTCGTAACATTTATAGAATATC 
GCACGCAAAGATGTAGACTCTTTCCGAATATAAGGAGAGTGTGGTAACATTTATAGAATATC 
 

 TTTACTCTTTCCGACGAGTGTACCAACATTTATACCAGATACGCTTTCAGAAGATATGGCCAG 
TTTACTCTTTCCGACGAGTGTACCAACATTTATACCAGATACGCTTTCAGAAGATATGGCCAG 
 

 TAAAGATTGGTGTACCAACATTTATACTAGATGTAATCTTTACTCTTTCAGGCGATATGGAGA 
TAAAGATTGGTGTACCAACATTTATACTAGATGTAATCTTTACTCTTTCAGGCGATATGGAGA 
 

 GTAAAGA 
GTAAAGA 
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c.) 
 AGAAATCTTGCGAGACCGTCAAGCCTATTACTATCGTAAGATATCTTCGCTAGAAAGTTTCAG 

AGAAATCTTGCGAGACCGTCAAGCCTATTACTATCGTAAGATATCTTCGCTAGAAAGTTTCAG 
 

 GACAAGAGTTAGATGTAACAACGTCTTGAGATACTATTATCTTAAGATACTATTATCTTAAGA 
GACAAGAGTTAGATGTAACAACGTCTTAAGATACTATTATCTTAAGATACTATTATCTTAAGA 
 

 TACTATTATCTTAAGATACTATTATCTTAAGATACTTTCTCACACTCCTCATTTCCACTCGCAG 
TACTATTATCTTAAGATACTATTATCTTAAGATACTTTCTCACACTCCTCATTTCCACTCGCAG 
 

 AGCGAGTAGAAACGTCTCATCACTTGCTTTTTCTCTTGGTGGAAAATAGGGCTGCAATCACCA 
AGCGAGTAGAAACGTCTCATCACTTGCTTTTTCTCTTGGTGGAAAATAGGGCTGCAATCACCA 
 

 ACA 
ACA 
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Appendix B   
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Summary of previous Ranavirus accounts and sampling as part of Great Smoky Mountains 
National Park amphibian survey conducted by USGS as part of the Inventory and Monitoring 
Program.   
 

In late June of 1999, a USGS field crew observed several dead or dying amphibians at 
Gourley Pond in Cades Cove.  They collected three dead juvenile Pickerel Frogs from the pond 
margin and submitted them to the USGS National Wildlife Heath Center (NWHC) in Madison, 
Wisconsin.  The crew also noted dead or dying recently metamorphosed Spotted Salamanders at 
Gourley Pond on July 12, 1999 and submitted three to the National Wildlife Health Center.  No 
explicit testing was conducted to confirm the presence of Ranavirus in these animals but it was 
the presumed cause of mortality.   

In 2000 twenty-five animals of four species, Wood Frog and Spring Peeper tadpoles, and 
Marbled Salamanders and Easter Red-Spotted Newts, were collected from Gourley Pond on May 
9 during a similar mortality event.  Of the specimens collected and analyzed, several tested 
positive for Ranavirus, including Wood Frog tadpoles (5/10), Marbled Salamander larvae (3/3), 
and an Eastern Red-spotted Newt (1/3).  The Spring Peeper tadpole collected appeared normal.  
On May 16 of that year, the field crew searched Gourley Pond as well as other amphibian pond-
breeding sites, Finley Cane Sinkholes, Cane Creek and the Sinks and did not observe any signs 
of disease or dead or dying amphibians.  On June 20, following reports of dying Bullfrog 
tadpoles in North Carolina, the USGS field crew searched Abrams Creek and Gourley Pond and 
all Bullfrog tadpoles appeared healthy.   

In 2001 the field crew again observed mortality at Gourley Pond and sent fifteen animals 
to the USGS NWHC.  Southern Red-backed Salamanders and Wood Frog tadpoles were tested 
for Ranavirus which was found only in the Wood Frog tadpoles.  Drying of Gourley Pond on the 
21 May resulted in mass mortality.   

During the extensive sampling throughout Great Smoky Mountains National Park, from 
1998-2001, including Methodist Church Pond and Gum Swamp no virus outbreaks were 
observed anywhere else in the park.   

Exact sampling dates and frequency are not clear from USGS reports so I do not know 
how extensively the three sites of my study were sampled.   
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East Tennessee.   
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